Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 111: 1076-1082, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29366900

RESUMO

In the present study, a new method for the synthesis of the open cell flexible polyurethane foams (PUFs) was developed by using starch powder and the modification of closed cell foam formulation. Starch is the second largest polymeric carbohydrate as a macromolecule on this planet with a large number of glucose units. Copper oxide nanoparticles (CuO NPs) were synthesized by thermal degradation method at different temperatures of 400, 600 and 800 °C as antimicrobial agents. The antimicrobial activity of CuO NPs and commercial CuO powder against the main causes of hospital infections were tested. CuO600 was the most effective antimicrobial agent and enhanced polymer matrix tensile strength with starch powder as new polyurethane foams (PUFs) cell opener with high tensile strength. The effects of parameters on tensile strength were optimized using response surface methodology (RSM). CuO NPs and PUF had optimal conditions and were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Foam synthesized at the optimal conditions had an open cell structure with high tensile strength and efficient antimicrobial activity that made them suitable to be used as an antimicrobial hospital mattress to control hospital infections.


Assuntos
Antibacterianos/química , Infecções/dietoterapia , Nanocompostos/química , Antibacterianos/uso terapêutico , Cobre/química , Humanos , Infecções/tratamento farmacológico , Nanopartículas Metálicas/química , Microscopia Eletrônica de Transmissão , Polímeros/química , Poliuretanos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Amido/química
2.
J Environ Sci Health B ; 47(7): 677-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22560030

RESUMO

Quartz crystal nanobalance (QCN) technique is considered as a powerful mass sensitive sensor for monitoring of materials in the sub-nanogram level. In the current study, a method based on QCN technique developed to determine Telone in air. Various coating materials including methyl phenyl silicon, 75% phenyl (OV25) and molecularly imprinted polymer (MIP) were employed. The frequency shift of OV25-modified quartz crystal was found to be linear against organohalogen compounds [Telone (soil fumigant), Koril (Herbicide), Endosulfan (organochlorine insecticide) and Chloroform (solvent)] concentrations in the range of 2.4 to 48 mg L(-1) for Telone vapor and 4.8-24 mg L(-1) for three other vapors. The correlation coefficients for Telone, Koril, Endosulfan and Chloroform were 0.992, 0.996, 0.989 and 0.991, respectively. The principal component analysis was also utilized to process the frequency response data of the organic vapors. Using principal component analysis, it was found that more than 93.85% of the data variance could still be explained by use of two principal components (PC1 and PC2). Subsequently, the successful discrimination of Telone and other compounds was quite possible through the principal component analysis of the transient responses of the OV25-modified electrode. In the second method, a molecularly imprinted polymer-coated sensor for Telone was developed. Molecularly imprinted polymer coated quartz crystal (MIP-QCN) showed a selective response to Telone and gave a linear relationship between frequency shift and amount of Telone from 1 to 48 mg L(-1). In this investigation, the proficiency of MIP-QCN and OV25-modified QCN sensors were compared.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Halogenados/análise , Nanotecnologia/métodos , Resíduos de Praguicidas/análise , Praguicidas/análise , Análise de Componente Principal/métodos , Quartzo/química , Poluentes do Solo/análise , Adsorção , Fumigação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...